Abstract

This paper considers the robust identification of Hammerstein-Wiener systems in the presence of Gaussian or non-Gaussian noises. An improved intelligent identification scheme is exploited by combining particle swarm optimization (PSO) and K-means clustering. The proposed scheme has strong ability to keep the balance between exploration and exploitation. Its procedure is about “global particle swarm optimization search — K-means clustering — local particle swarm optimization search”. The proposed scheme can identify the parameters of the general Hammerstein-Wiener system with dead zone and saturation characteristics, and obtain a more accurate model for the actual production process. Relative to other improved particle swarm optimization methods, the accuracy of parameter estimation is improved by nearly 53 % at data length L=2000. In particular, the method can better model nonlinear dynamics and facilitate the precise implementation of control in chemical production.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.