Abstract

The identification of black-box nonlinear statespace models requires a flexible representation of the state and output equation. Artificial neural networks have proven to provide such a representation. However, as in many identification problems, a nonlinear optimization problem needs to be solved to obtain the model parameters (layer weights and biases). A well-thought initialization of these model parameters can often avoid that the nonlinear optimization algorithm converges to a poorly performing local minimum of the considered cost function. This paper introduces an improved initialization approach for nonlinear state-space models represented as a recurrent artificial neural network and emphasizes the importance of including an explicit linear term in the model structure. Some of the neural network weights are initialized starting from a linear approximation of the nonlinear system, while others are initialized using random values or zeros. The effectiveness of the proposed initialization approach over previously proposed methods is illustrated on two benchmark examples.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call