Abstract
A combined model based on improved information entropy and vague support vector machine (IVSVM) is introduced into transformer fault diagnosis using dissolved gas analysis in oil (DGA). The improved information entropy method is used to obtain the weights of each gas and to weight the raw data, and the processed training data and the corresponding fault types are inputted into the vague support vector machine (VSVM) model to obtain classifiers. Firstly, the training data are weighted by the improved information entropy method to discretise the original data from the mixed state for subsequent classifier training. Then, the vague set divides the events into true, false and unknown factors, which can optimise the sub-interface of SVM and improve the accuracy of the boundary point classification. Finally, fault data from the literature and actual collections are selected for training and testing. By comparing with the widely used ratio method and artificial intelligence method, it can be concluded that the method described herein can effectively improve the accuracy of fault diagnosis. The result shows that this method has better applicability when facing actual fault type classification with higher data similarity.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.