Abstract

Accurate crop yield forecasting is central to effective risk management for many stakeholders, including farmers, insurers, and governments, in various practices, such as crop management, sales and marketing, insurance policy design, premium rate setting, and reserving. This paper rst investigates an innovative approach of yield forecasting using a dynamic factor model. Based on the proposed approach, we then design an enhanced weather index-based insurance (IBI) policy. The dynamic factor approach is motivated by its ability to effectively summarize the information in a large set of explanatory variables with common factors of a much lower dimension. This makes it possible to use an extensive set of variables in crop yield prediction without worrying about identication issues. Using both county-level and state-level crop production data from the state of Illinois, U.S., the empirical results show that the dynamic factor approach produces more accurate in- and out-of-sample forecasting results compared to the classical statistical models. The empirical results also support that the proposed IBI policy based on the dynamic forecasting model has small basis risk. This, in turn, greatly improves the IBI's hedge effectiveness against agricultural production as well as increases its practicality as an insurance policy for agriculture.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.