Abstract

Many researchers have concentrated on improving the efficiency of photovoltaic (PV) systems by optimizing control mechanisms aimed at extracting the maximum power from PV panels. The variable step size incremental conductance control (VSS-INC) technique has been the primary focus of the majority of these studies. However, this strategy faces challenges in the form of drift when confronted with swift changes in solar irradiation, temperature variations, and resistive load fluctuations. In addressing this issue, the present study proposes an innovative VSS-INC method. It is suggested to utilize a buck-boost converter as an impedance adaptor in achieving maximum power point tracking (MPPT). This involves controlling the duty cycle and aligning its input with that of the PV module. The efficiency of the suggested approach was evaluated through MATLAB software, and the outcomes were compared with traditional algorithms across various operational scenarios. Simulation results demonstrate the notably satisfactory and efficient performance of the proposed method when compared to conventional approaches.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.