Abstract

We study the maximization version of the fundamental graph coloring problem. Here the goal is to color the vertices of a k-colorable graph with k colors so that a maximum fraction of edges are properly colored (i.e. their endpoints receive different colors). A random k-coloring properly colors an expected fraction 1-1/k of edges. We prove that given a graph promised to be k-colorable, it is NP-hard to find a k-coloring that properly colors more than a fraction ~1-O(1/k} of edges. Previously, only a hardness factor of 1-O(1/k^2) was known. Our result pins down the correct asymptotic dependence of the approximation factor on k. Along the way, we prove that approximating the Maximum 3-colorable subgraph problem within a factor greater than 32/33 is NP-hard. Using semidefinite programming, it is known that one can do better than a random coloring and properly color a fraction 1-1/k +2 ln k/k^2 of edges in polynomial time. We show that, assuming the 2-to-1 conjecture, it is hard to properly color (using k colors) more than a fraction 1-1/k + O(ln k/ k^2) of edges of a k-colorable graph.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.