Abstract

This investigation proposes the improved double δ-doped InGaP/InGaAs heterostructure field-effect transistor (HFET) grown by metalorganic chemical vapour deposition. The extrinsic transconductance (gm) and saturation current density (Imax) of the double δ-doped InGaP/InGaAs HFET are superior to those of the previously reported single δ-doped InGaP/InGaAs HFETs. The first n-InAlGaP/GaAs HFET is also investigated because it has a high Schottky barrier, a large high band gap and a large conduction-band discontinuity (ΔEC). Even without indium in the channel of the InAlGaP/GaAs HFET, gm and Imax are as high as 170 mS mm−1 and 410 mA mm−1, respectively. The gm values of these two HFETs remain large even when the gate voltages are positive. Moreover, the breakdown voltages of the two examined HFETs both exceed 40 V.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.