Abstract

Chua’s circuit is a well-established model for studying chaotic phenomena and is extensively implemented in fields like encrypted communication. However, a traditional Chua’s circuit has large volume, high component precision requirements and limited adjustable parameter range, which are not conducive to application. In order to solve these problems, we propose an improved implementation of Chua’s circuit on an active inductor and non-autonomous system. First, we adopt the strategy of using active inductors instead of traditional passive inductors, achieving the miniaturization of the circuit and improving the accuracy of inductance. In addition, we present the theory of substituting non-autonomous systems for classical autonomous systems to reduce the requirements for the accuracy of components and improve the robustness of the circuit. Lastly, we connect the extension resistor in parallel with Chua’s diode to optimize circuit structure, thereby increasing the range of the adjustable parameter. Based on the three improvements above, experiments have shown that the average maximum error tolerance of components of our improved design has been increased from 1.88% to 7.38% when generating a single vortex, and from 4.73% to 12.61% when generating a double vortex, compared with the traditional Chua’s circuit. The range of the adjustable parameter has been increased by 195.83% and 36.98%, respectively, when generating a single vortex and double vortex. In summary, our improved circuit is more practical than the traditional Chua’s circuit and has good application value.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call