Abstract
In this study, polyurethane urea was surface-modified to elevate cell recognition through immobilization of bioactive gelatin. The poly(urethane urea) was synthesized using poly(ε-caprolactone) diol in the absence of a chain extender. The synthesized polyurethane urea was then functionalized with gelatin (gelatin-grafted poly(urethane urea)) via aminolysis. Chemical changes at the polyurethane urea surface were monitored using titration, water contact angle. Fourier transform infrared, and zeta potential measurements. Significantly larger amounts of gelatin were grafted on the polyurethane urea surface compared to those previously reported for poly(ε-caprolactone) diol (three times more) and polyurethanes (two times more), while the mechanical properties were not compromised. Proliferation of human adipose–derived mesenchymal stem cells on the polyurethane urea and the gelatin-grafted polyurethane urea was evaluated through MTT assay. Although both samples enhanced human adipose–derived mesenchymal stem cells’ proliferation, gelatin-grafted polyurethane urea supported human adipose–derived mesenchymal stem cells’ proliferation at a remarkably higher rate.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.