Abstract

To assess image quality of a deep learning reconstruction (DLR) algorithm across dose levels using a semi-anthropomorphic upper-abdominal phantom, and compare with filtered back projection (FBP) and hybrid iterative reconstruction (IR). CT scans obtained at five dose levels (CTDIvol 5, 10, 15, 20 and 25 mGy) were reconstructed with FBP, hybrid IR (IR50, IR70 and IR90) and DLR of low (DLL), medium (DLM) and high strength (DLH) in 0.625mm and 2.5mm slices. CT number, homogeneity, noise, contrast, contrast-to-noise ratio (CNR), noise texture deviation (NTD; a measure of IR-specific artifacts), noise power spectrum (NPS) and task-based transfer function (TTF) were compared between reconstruction algorithms. CT numbers were highly consistent across reconstruction algorithms. Image noise was significantly reduced with higher levels of DLR. Noise texture (NPS and NTD) was with DLR maintained at comparable levels to FBP, contrary to increasing levels of hybrid IR. Images reconstructed with DLR of low and high strength in 0.625mm slices showed similar noise characteristics to 2.5mm slice FBP and IR50, respectively. Dose-reduction potential based on image noise with IR50 as reference was estimated to 35% for DLM and 74% for DLH. The novel DLR algorithm demonstrates robust noise reduction with maintained noise texture characteristics despite higher algorithm strength, and may have overcome important limitations of IR. There may be potential for dose reduction and additional benefit from thin-slice reconstruction.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.