Abstract

Medical linear accelerator mounted cone beam CT (CBCT) scanner provides useful soft tissue contrast for purposes of image guidance in radiotherapy. The presence of extensive scattered radiation has a negative effect on soft tissue visibility and uniformity of CBCT scans. Antiscatter grids (ASG) are used in the field of diagnostic radiography to mitigate the scatter. They usually do increase the contrast of the scan, but simultaneously increase the noise. Therefore, and considering other scatter mitigation mechanisms present in a CBCT scanner, the applicability of ASGs with aluminum interspacing for a wide range of imaging conditions has been inconclusive in previous studies. In recent years, grids using fiber interspacers have appeared, providing grids with higher scatter rejection while maintaining reasonable transmission of primary radiation. The purpose of this study was to evaluate the impact of one such grid on CBCT image quality. The grid used (Philips Medical Systems) had ratio of 21:1, frequency 36 lp/cm, and nominal selectivity of 11.9. It was mounted on the kV flat panel detector of an Elekta Synergy linear accelerator and tested in a phantom and a clinical study. Due to the flex of the linac and presence of gridline artifacts an angle dependent gain correction algorithm was devised to mitigate resulting artifacts. Scan reconstruction was performed using XVI4.5 augmented with inhouse developed image lag correction and Hounsfield unit calibration. To determine the necessary parameters for Hounsfield unit calibration and software scatter correction parameters, the Catphan 600 (The Phantom Laboratory) phantom was used. Image quality parameters were evaluated using CIRS CBCT Image Quality and Electron Density Phantom (CIRS) in two different geometries: one modeling head and neck and other pelvic region. Phantoms were acquired with and without the grid and reconstructed with and without software correction which was adapted for the different acquisition scenarios. Parameters used in the phantom study were t(cup) for nonuniformity and contrast-to-noise ratio (CNR) for soft tissue visibility. Clinical scans were evaluated in an observer study in which four experienced radiotherapy technologists rated soft tissue visibility and uniformity of scans with and without the grid. The proposed angle dependent gain correction algorithm suppressed the visible ring artifacts. Grid had a beneficial impact on nonuniformity, contrast to noise ratio, and Hounsfield unit accuracy for both scanning geometries. The nonuniformity reduced by 90% for head sized object and 91% for pelvic-sized object. CNR improved compared to no corrections on average by a factor 2.8 for the head sized object, and 2.2 for the pelvic sized phantom. Grid outperformed software correction alone, but adding additional software correction to the grid was overall the best strategy. In the observer study, a significant improvement was found in both soft tissue visibility and nonuniformity of scans when grid is used. The evaluated fiber-interspaced grid improved the image quality of the CBCT system for broad range of imaging conditions. Clinical scans show significant improvement in soft tissue visibility and uniformity without the need to increase the imaging dose.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.