Abstract

Background Two-dimensional (2D) spatially selective radiofrequency (RF) pulses may be used to excite a restricted volume of tissue. By incorporating a “pencil beam” 2D pulse into a T2-Prep module, one may create a “2D-T2-Prep” that combines T2-weighting with outer volume suppression. This may be of particular benefit to parallel imaging techniques, where artefacts typically originate from residual foldover signal. By suppressing signal from outside the targeted region of interest (ROI), image quality may thus improve. We present numerical simulations, phantom validation, and in vivo MRA of the right coronary artery to test this hypothesis.

Highlights

  • Two-dimensional (2D) spatially selective radiofrequency (RF) pulses may be used to excite a restricted volume of tissue

  • By incorporating a “pencil beam” 2D pulse into a T2-Prep module, one may create a “2D-T2-Prep” that combines T2-weighting with outer volume suppression

  • The first RF pulse of an adiabatic T2-Prep was replaced with a jinc pulse and spiral gradients

Read more

Summary

Background

Two-dimensional (2D) spatially selective radiofrequency (RF) pulses may be used to excite a restricted volume of tissue. By incorporating a “pencil beam” 2D pulse into a T2-Prep module, one may create a “2D-T2-Prep” that combines T2-weighting with outer volume suppression. This may be of particular benefit to parallel imaging techniques, where artefacts typically originate from residual foldover signal. By suppressing signal from outside the targeted region of interest (ROI), image quality may improve. Phantom validation, and in vivo MRA of the right coronary artery to test this hypothesis

Methods
Results
Conclusions
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.