Abstract

Bio-oil, one of significant renewable energy, was blocked from its direct application by thermodynamic instability due to the high oxygen content, so its deoxygenation needs urgent solution. Avoiding the disadvantages of the traditional catalytic method, such as harsh reaction conditions, potential explosion risk and environmental pollution, we utilize solid-acidic zeolites as low-load Pd-based catalyst supports instead of corrosive acid additives, with polymethylhydrosiloxane (PMHS) as the hydrogen-supplying agent, to achieve efficient hydrodeoxygenation of bio-oil models (carbonyl compounds) under mild conditions. The reaction conditions such as Si/Al ratio of HZSM-5 zeolite, temperature, solvent, and the type of Pd salts precursor are optimized. In particular, we have found that polar protic solvents improve catalytic efficiency by promoting proton transfer in the reaction. In an open-to-air, 97.9% ethylbenzene yield can be obtained for acetophenone conversion under mild conditions (0.5 wt% Pd/HZSM-5(18), 65 °C, 3 h, n-butanol as solvent), which is more efficient and environmental friendly than currently reports. Meanwhile, hydrogenation–dehydration mechanism was proposed, and the Brønsted acid in HZSM-5 promotes the dehydration of the alcohol (rate-limiting step) by efficiently accelerating the removal of hydroxyl groups and the proton transfer of the reaction. Furthermore, the catalytic scheme exhibits the excellent stability (reusable seven times) and versatility. The potential of a green catalytic technology using with PMHS opens attractive opportunities for bio-oil upgrading.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.