Abstract
The gp120-derived V3 loop of HIV-1 is involved in co-receptor interaction, it guides cell tropism, and contains an epitope for antibody neutralization. Thus, HIV-1 V3 is an attractive vaccine candidate. The V3 of the MN strain (MN V3) contains both B- and T-cell epitopes, including a known mouse H-2d-restricted cytotoxic T lymphocyte (CTL) epitope. In an attempt to improve the immunogenicity of V3 in DNA vaccines, a plasmid expressing MN V3 as a fusion protein with the highly immunogenic middle (pre-S2 + S) surface antigen of hepatitis B virus (HBsAg) was constructed. Epidermal inoculation by gene gun was used for genetic immunization in a mouse model. Antibody and CTL responses to MN V3 and HBsAg were measured and compared with the immune responses obtained after vaccination with plasmids encoding the complete HIV-1 MN gp160 and HBsAg (pre-S2 + S), respectively. DNA vaccination with the HIV MN gp160 envelope plasmid induced a slow and low titred anti-MN V3 antibody response at 12 weeks post-inoculation (p.i.) and a late appearing (7 weeks), weak and variable CTL response. In contrast, DNA vaccination with the HBsAg-encoding plasmid induced a rapid and high titred anti-HBsAg antibody response and a uniform strong anti-HBs CTL response already 1 week p.i. in all mice. DNA vaccination with the chimeric MN V3/HBsAg plasmid elicited humoral responses against both viruses within 3-6 weeks which peaked at 6-12 weeks and remained stable for at least 25 weeks. In addition, specific CTL responses were induced in all mice against both MN V3 and HBsAg already within the first 3 weeks, lasting at least 11 weeks. Thus, HBsAg acts as a 'genetic vaccine adjuvant' augmenting and accelerating the cellular and humoral immune response against the inserted MN V3 loop. Such chimeric HIV-HBsAg plasmid constructs may be useful in DNA immunizations as a 'carrier' of protein regions or minimal epitopes which are less exposed or poorly immunogenic.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.