Abstract

Human-object interaction (HOI) detection, which finds the relationships between humans and objects, is an important research area, but current HOI detection performance is unsatisfactory. One of the main problems is that CNN-based HOI detection algorithms fail to predict correct outputs for unseen test data based on a limited number of available training examples. Herein, we propose a novel framework for HOI detection called the on-the-fly stacked generalization deep neural network (OSGNet). OSGNet consists of three main components: (1) feature extraction modules, (2) HOI relationship detection networks, and (3) a meta-learner for combining the outputs of sub-models. Here, components (1) and (2) are considered to be sub-models. Any task-based feature extraction modules, such as classification or human pose estimation modules, can be used as sub-models. To achieve on-the-fly stacked generalization, the sub-models and meta-learner are trained simultaneously. The sub-models are trained to provide complementary information, and the meta-learner improves the generalization performance for unseen test data. Extensive experiments demonstrate that the proposed method achieves state-of-the-art accuracy, particularly in cases involving rare classes.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.