Abstract

Ultra-high frequency (UHF) signal detection is one of the most effective methods for spatial orientation and partial discharge fault diagnosis. However, when the background noise, especially Gaussian white noise and narrow-band interference, is very high, or the detection region is remote, location accuracy may decrease. To improve this, a location system based on the improved higher-order cumulant time delay estimation (TDE) method combined with energy accumulation is proposed. In the system, the UHF waves are received by a four-antenna array. Improved fourth-order cumulants with a smoothed coherence transform (SCOT) window are used in the TDE, by which Gaussian white noise and narrow-band interference can be efficiently suppressed. The energy accumulation algorithm is applied to the cross-correlation results, by which the accuracy of TDE can be enhanced. The applicability of the proposed localization algorithm is evaluated by simulation and experiment. The simulation results show that the improved fourth-order cumulant TDE-parameter accumulation algorithm is superior in accuracy to traditional location methods. In the experimental measurements, two partial discharge measurement points located in a complex electromagnetic environment are tested. The results illustrate that the proposed method can effectively suppress Gaussian white and narrow-band noise, and the location results can satisfy accuracy requirements when the measurement point is within 70 m.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.