Abstract

<h2>Abstract</h2> <i>Introduction</i>: The purpose of this pilot clinical study was to determine if a novel chest compression device would improve hemodynamics when compared to manual chest compression during cardiopulmonary resuscitation (CPR) in humans. The device is an automated self-adjusting electromechanical chest compressor based on AutoPulse™ technology (Revivant Corporation) that uses a load distributing compression band (A-CPR) to compress the anterior chest. <i>Methods</i>: A total of 31 sequential subjects with in-hospital sudden cardiac arrest were screened with institutional review board approval. All subjects had received prior treatment for cardiac disease and most had co-morbidities. Subjects were included following 10min of failed standard advanced life support (ALS) protocol. Fluid-filled catheters were advanced into the thoracic aorta and the right atrium and placement was confirmed by pressure waveforms and chest radiograph. The coronary perfusion pressure (CPP) was measured as the difference between the aortic and right atrial pressure during the chest compression's decompressed state. Following 10min of failed ALS and catheter placement, subjects received alternating manual and A-CPR chest compressions for 90s each. Chest compressions were administered without ventilation pauses at 100compressions/min for manual CPR and 60compressions/min for A-CPR. All subjects were intubated and ventilated by bag-valve at 12breaths/min between compressions. Epinephrine (adrenaline) (1mg i.v. bolus) was given at the request of the attending physician at 3–5min intervals. Usable pressure signals were present in 16 patients (68±6 years, 5 female), and data are reported from those patients only. A-CPR chest compressions increased peak aortic pressure when compared to manual chest compression (153±28mmHg versus 115±42mmHg, <i>P</i><0.0001, mean±S.D.). Similarly, A-CPR increased peak right atrial pressure when compared to manual chest compression (129±32mmHg versus 83±40mmHg, <i>P</i><0.0001). Furthermore, A-CPR increased CPP over manual chest compression (20±12mmHg versus 15±11mmHg, <i>P</i><0.015). Manual chest compressions were of consistent high quality (51±20kg) and in all cases met or exceeded American Heart Association guidelines for depth of compression. <i>Conclusion</i>: Previous research has shown that increased CPP is correlated to increased coronary blood flow and increased rates of restored native circulation from sudden cardiac arrest. The A-CPR system using AutoPulse technology demonstrated increased coronary perfusion pressure over manual chest compression during CPR in this terminally ill patient population.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call