Abstract
Harris Hawks Optimization (HHO) algorithm is a kind of intelligent algorithm that simulates the predation behavior of hawks. It suffers several shortcomings, such as low calculation accuracy, easy to fall into local optima and difficult to balance exploration and exploitation. In view of the above problems, this paper proposes an improved HHO algorithm named as QC-HHO. Firstly, the initial population is generated by Hénon Chaotic Map to enhance the randomness and ergodicity. Secondly, the quantum correction mechanism is introduced in the local search phase to improve optimization accuracy and population diversity. Thirdly, the Nelder-Mead simplex method is used to improve the search performance and breadth. Fourthly, group communication factors describing the relationship between individuals is taken into consideration. Finally, the energy consumption law is integrated into the renewal process of escape energy factor E and jump distance J to balance exploration and exploitation. The QC-HHO is tested on 10 classical benchmark functions and 30 CEC2014 benchmark functions. The results show that it is superior to original HHO algorithm and other improved HHO algorithms. At the same time, the improved algorithm studied in this paper is applied to gas leakage source localization by wireless sensor networks. The experimental results indicate that the accuracy of position and gas release rate are excellent, which verifies the feasibility for application of QC-HHO in practice.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.