Abstract

Barium stannate is a mixed-metal oxide with a perovskite structure and unique electric, catalytic, and sensing properties. Surface chemistry determines gas sensing behavior, which depends on materials synthesis and processing methods. A novel technique was invented for obtaining BaSnO3 nanoparticles using a hydrogen peroxide assisted sol-gel process. However, to date, the sensing behavior of such prepared barium stannate nanoparticles has not been investigated. In this work, we obtained pure and La-modified BaSnO3 by the hydrogen peroxide-assisted sol-gel method and comparatively studied the composition, microstructure, and gas sensing behavior using as a reference barium stannate prepared by a conventional hydrothermal route. The increased sensitivity and selectivity to H2S were observed for the sol-gel obtained BaSnO3, and the sensing behavior was improved at temperatures higher than 150 °C by La(5%)-modified of barium stannate. The sensing mechanism was revealed by in situ infrared and Raman spectroscopy. The superior sensitivity and selectivity of the sol-gel obtained materials were attributed to lower surface contamination by adsorbed carbonate groups compared to hydrothermally obtained BaSnO3. The surface modification by La3+ species further reduced the carbonate impurity and enhanced the adsorption and oxidation of H2S gas at the BaSnO3 surface.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.