Abstract

Grey wolf optimizer (GWO) is a novel nature-inspired algorithm, and it has the characteristics of strong local search ability but weak global search ability when dealing with some large-scale problems. So a GWO based on random opposition learning, strengthening hierarchy of grey wolves and modified evolutionary population dynamics (EPD), named as RSMGWO, is proposed. Firstly, a search way based on strengthening hierarchy of grey wolves is added; each grey wolf uses two kinds of updating modes, including a global-best search way based on random dimensions and the original search way of GWO, to improve the optimization performance. Secondly, a modified EPD is embedded to improve the optimization performance further. Finally, a random opposition learning strategy is merged to avoid falling into local optima. Experimental results on 19 different (especially large scale) dimensional benchmark functions and multi-layer perceptron (MLP) optimization for cancer identification show that compared with GWO and quite a few state-of-the-art algorithms, RSMGWO is able to provide more competitive results, in terms of both accuracy and convergence.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.