Abstract

Fluorescent proteins have become an invaluable tool in cell biology. The green fluorescent protein variant EGFP is especially widely applied. Use of fluorescent proteins, including EGFP, however can be hindered by inefficient protein folding, resulting in protein aggregation and reduced fluorescence. This is especially profound in prokaryotic cells. Furthermore, EBFP, a blue fluorescent variant of EGFP, is rarely used because of its dim fluorescence and fast photobleaching. Thus, efforts to improve properties such as protein folding, fluorescence brightness, and photostability are important. Strongly enhanced green fluorescent (SGFP2) and strongly enhanced blue fluorescent (SBFP2) proteins were created, based on EGFP and EBFP, respectively. We used site-directed mutagenesis to introduce several mutations, which were recently shown to improve the fluorescent proteins EYFP and ECFP. SGFP2 and SBFP2 exhibit faster and more efficient protein folding and accelerated chromophore oxidation in vitro. For both strongly enhanced fluorescent proteins, the photostability was improved 2-fold and the quantum yield of SBFP2 was increased 3-fold. The improved folding efficiency reduced the extent of protein aggregation in Escherichia coli, thereby increasing the brightness of bacteria expressing SGFP2 7-fold compared to the brightness of those expressing EGFP. Bacteria expressing SBFP2 were 16-fold more fluorescent than those expressing EBFP. In mammalian cells, the improvements were less pronounced. Cells expressing SGFP2 were 1.7-fold brighter than those expressing EGFP, which was apparently due to more efficient protein expression and/or chromophore maturation. Mammalian cells expressing SBFP2 were 3.7-fold brighter than cells expressing EBFP. This increase in brightness closely resembled the increase in intrinsic brightness observed for the purified recombinant protein. The increased maturation efficiency and photostability of SGFP2 and SBFP2 facilitate detection and extend the maximum duration of fluorescence imaging.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.