Abstract

This paper proposes an improved version of the grasshopper optimization algorithm (GOA) based on the opposition-based learning (OBL) strategy called OBLGOA for solving benchmark optimization functions and engineering problems. The proposed OBLGOA algorithm consists of two stages: the first stage generates an initial population and its opposite using the OBL strategy; and the second stage uses the OBL as an additional phase to update the GOA population in each iteration. However, the OBL is applied to only half of the solutions to reduce the time complexity. To investigate the performance of the proposed OBLGOA, six sets of experiment series are performed, and they include twenty-three benchmark functions and four engineering problems. The experiments revealed that the results of the proposed algorithm were superior to those of ten well-known algorithms in this domain. Eventually, the obtained results proved that the OBLGOA algorithm can provide competitive results for optimization engineering problems compared with state-of-the-art algorithms.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.