Abstract
Improving the simulation of quantum circuits on classical computers is important for understanding quantum advantage and increasing development speed. In this paper, we explore a new way to express stabilizer states and further improve the speed of simulating stabilizer circuits with a current existing approach. First, we discover a unique and elegant canonical form for stabilizer states based on graph states to better represent stabilizer states and show how to efficiently simplify stabilizer states to canonical form. Second, we develop an improved algorithm for graph state stabilizer simulation and establish limitations on reducing the quadratic runtime of applying controlled-Pauli $Z$ gates. We do so by creating a simpler formula for combining two Pauli-related stabilizer states into one. Third, to better understand the linear dependence of stabilizer states, we characterize all linearly dependent triplets, revealing symmetries in the inner products. Using our novel controlled-Pauli $Z$ algorithm, we improve runtime for inner product computation from $O(n^3)$ to $O(nd^2)$ where $d$ is the maximum degree of the graph.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.