Abstract
In this paper, a multi-objective allocation and scheduling of wind turbines and electric vehicle parking lots are performed in an IEEE 33-bus radial distribution network to reach the minimum annual costs of power loss, purchased grid energy, wind energy, PHEV energy, battery degradation cost, and network voltage deviations. Decision variables, such as the site and size of wind turbines and electric parking lots in the distribution system, are found using an improved golden jackal optimization (IGJO) algorithm based on Rosenbrock’s direct rotational (RDR) strategy. The results showed that the IGJO finds the optimal solution with a lower convergence tolerance and a better (lower) objective function value compared to conventional GJO, the artificial electric field algorithm (AEFA), particle swarm optimization (PSO), and manta ray foraging optimization (MRFO) methods. The results showed that using the proposed method based on the IGJO, the energy loss cost, grid energy cost, and network voltage deviations were reduced by 29.76%, 65.86%, and 18.63%, respectively, compared to the base network. Moreover, the statistical analysis results proved their superiority compared to the conventional GJO, AEFA, PSO, and MRFO algorithms. Moreover, considering vehicles battery degradation costs, the losses cost, grid energy cost, and network voltage deviations have been reduced by 3.28%, 1.07%, and 4.32%, respectively, compared to the case without battery degradation costs. In addition, the results showed that the decrease in electric vehicle availability causes increasing losses for grid energy costs and weakens the network voltage profile, and vice versa.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.