Abstract

For the mass production of chestnut trees with selected, hybrid, or genetically engineered genotypes, one potentially desirable propagation strategy is based on somatic embryogenesis. Although methods exist for the initiation of embryogenic cultures of Castanea sativa from immature zygotic embryos or leaf explants, the embryos produced have had low rates of conversion into plantlets. This study explored the possible benefits for somatic embryos that have already undergone maturation and cold treatments, of (a) partial slow or fast desiccation, and (b) of the addition of plant growth regulators or glutamine to the germination medium. Germination response was evaluated in terms of both conversions to plantlets and through embryos developing only shoots (shoot germination) that could be rooted following the micropropagation protocols developed for chestnut. Two or 3 wk slow desiccation in sealed empty Petri dishes resulted in a slight reduction in water content that nevertheless increased total potential plant recovery, shoot length, and the number of leaves per plantlet. However, best results were achieved by 2 h fast drying in a laminar flow hood, which reduced embryo moisture content to 57–58% and enhanced the potential plant recovery and quality of regenerated plantlets. Plant yield was also promoted by addition of 0.44 μM benzyladenine and 200–438 mg/l of glutamine to the germination medium, and plantlet quality (as evidenced by root, shoot, and leaf growth) by the further addition of 0.49 μM indole-3-butyric acid.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call