Abstract

Predictive reservoir modeling, even if present in the form of only basic hydrogeological model assumptions, is expected to accompany the majority of carbon capture and sequestration monitoring activities. It thus represents a source of prior information about the migration of injected fluids that can benefit geophysical survey planning and ensuing monitoring. Constraining the imaging of geophysical monitoring data with reservoir modeling is preferable over standalone geophysical imaging because of additional complementary hydrogeological information. However, fully coupled hydrogeophysical data inversion for flow-modeling parameters that control saturation predictions is an involved process. Within the context of three-dimensional electromagnetic (EM) inversion of data from borehole-to-surface layouts, we employ a "poor people's" alternative. The approach constrains geophysical inversion parameters through saturation predictions. The coupling is realized through spatially variable lower and upper parameter bounds that scale with gas saturation magnitudes, the latter provided by reservoir modeling. Enhancement of three-dimensional time-lapse plume EM imaging is demonstrated for simulated sequestration into a depleted gas reservoir.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.