Abstract
Auricularia heimuer is among China’s most important edible mushrooms and is rich in gum. With the improvement of people’s quality of life, demand is increasing for high-quality and good-tasting food; thus, the texture of A. heimuer is the focus of increasing attention. In this study, we added extra markers to a previously constructed genetic linkage map to generate a high-density genetic linkage map of A. heimuer, resolved the attributes of substrate quality-related traits, and performed quantitative trait locus (QTL) localization. The original genetic linkage map was improved by adding two new linkage groups, merging seven linkage groups into three linkage groups, and increasing the average linkage distance and total linkage estimated length. We anchored the 142 scaffolds of the genome to the improved genetic linkage map. In total, 15 significant QTLs controlling four quality-related traits were detected. Gumminess and chewiness, and cohesiveness and resilience, were linked. Three genes controlled cohesiveness and resilience; one gene controlled gumminess and chewiness. In conclusion, this study lays the foundation for gene localization and chromosome assembly in A. heimuer, elucidation of the mechanism of substrate quality-related trait formation, and provides a basis for precision breeding of A. heimuer.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.