Abstract

The first minimum spanning tree of length constraint problem (MSTLCP) is put forward, which can not be solved by traditional algorithms. In order to solve MSTLCP, improved genetic algorithm is put forward based on the idea of global and feasible searching. In the improved genetic algorithm, chromosome is generated to use binary-encoding, and more reasonable fitness function of improved genetic algorithm is designed according to the characteristics of spanning tree and its cotree; in order to ensure the feasibility of chromosome, more succinct check function is introduced to three kinds of genetic operations of improved genetic algorithm (generation of initial population, parental crossover operation and mutation operation); three kinds of methods are used to expand searching scope of algorithm and to ensure optimality of solution, which are as follows: the strategy of preserving superior individuals is adopted, mutation operation is improved in order to enhance the randomness of the operation, crossover rate and mutation rate are further optimized. The validity and correctness of improved genetic algorithm solving MSTLCP are explained by a simulate experiment where improved genetic algorithm is implemented using C programming language. And experimental results are analyzed: selection of population size and iteration times determines the efficiency and precision of the simulate experiment.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.