Abstract

This paper presents the performance evaluation of the recently developed Growing and Pruning Radial Basis Function (GAP-RBF) algorithm for classification problems. Earlier GAP-RBF was evaluated only for function approximation problems. Improvements to GAP-RBF for enhancing its performance in both accuracy and speed are also described and the resulting algorithm is referred to as Fast GAP-RBF (FGAP-RBF). Performance comparison of FGAP-RBF algorithm with GAP-RBF and the Minimal Resource Allocation Network (MRAN) algorithm based on four benchmark classification problems, viz. Phoneme, Segment, Satimage and DNA are presented. The results indicate that FGAP-RBF produces higher classification accuracy with reduced computational complexity.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.