Abstract
In this paper, a stable adaptive fuzzy sliding mode based tracking control is developed for a class of nonlinear MIMO systems that are represented by input output models involving system uncertainties and external disturbances. The main contribution of the proposed method is that the structure of the controller system is partially unknown and does not require the bounds of uncertainties and disturbance to be known. First, a fuzzy logic system is designed to estimate the unknown function. Secondly, in order to eliminate the chattering phenomenon brought by the conventional variable structure control, the signum function is replaced by an adaptive Proportional Derivative (PD) term in the proposed approach. All parameter adaptive laws and robustifying control terms are derived based on Lyapunov stability analysis, so that convergence to zero of tracking errors and boudedness of all signals in the closed-loop system can be guaranteed. Finally, a mass-spring-damper system is simulated to demonstrate the validity and the effectiveness of the proposed controller.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.