Abstract

The hydrophilic substances in natural organic matter (NOM) are the main precursor of disinfection by-products (DBPs) formed during disinfection processes. The fractionation of the components in NOM based on hydrophilicity contributes to elaborating the behavior of NOM during disinfection. However, the traditional NOM fractionation method using two hydrophobic resins of DAX-8 and XAD-4 lays emphasis on the separation of hydrophobic substances, limiting the thorough study of the hydrophilic components in NOM. In this work, the amphiphilic resin NDAM was employed as a replacement of XAD-4 to realize more thorough separation of the hydrophilic substances. Compared with the divinylbenzene (DVB) structure of XAD-4, the NDAM possesses a more hydrophilic skeleton of N-vinylpyrrolidone (NVP) and DVB which favors the adsorption of hydrophilic components in NOM. The two fractionation methods of DAX-8 + XAD-4 and DAX-8 + NDAM were applied to fractionate NOM, and the obtained fractions were characterized via fluorescence spectra, UV spectra, acid-base titration, the partition coefficients of aqueous two-phase systems(ATPs), and1H nuclear magnetic resonance (1H-NMR). The results showed that the transphilic fractions separated by XAD-4 accounted for 11.09% of NOM, while the proportion increased to 20.33% with the method of NDAM fractionation. Besides, the hydrophilic components enriched by NDAM not only have more π-conjugated systems and more aromatic structure but also contain more oxygen-containing and nitrogen-containing functional groups. In addition, the hydrophilic fractions separated by NDAM contained more DBP precursors. The NDAM separates more NOM which can produce bromine-containing DBPs into HPIA, and the DBP productivity of HPIN is significantly higher than that of XAD-4. In general, the NOM fractionation method proposed in this study utilizing NDAM resin could fractionate the hydrophilic fractions in NOM more thoroughly, showing application potential in the analysis and control of DBPs formed from NOM.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call