Abstract

Providing inertia in modern electrical power grids has become a highly demanding task to mitigate reduced power system inertia of renewable energy sources (RES) based power grids. To mitigate the reduced inertia-related problems and consequences, this paper presents improved FOCs for achieving load frequency control (LFC) and the virtual inertia control (VIC) provision of electric vehicles (EVs) lithium-ion batteries. The proposed method includes a twofold contribution using a new hybrid FOC method and an optimum control parameter design method. An innovative hybrid controller is proposed by merging the characteristics of FOPID and TID methods with a fractional filtering stage, leading to hybrid tilt plus FOC integrator-derivative terms. From the VIC side, the TID is proposed to provide a fast response to lithium-ion batteries of the already available EVs. Furthermore, a metaheuristic-based design method is proposed to simultaneously determine the best control parameters set and to facilitate the design procedures using the recently presented powerful growth optimization algorithm (GO). The two interconnected areas case study with high-RES penetration is suggested for testing and investigating the new proposed controller. The results include performance evaluations and comparisons at various expected model uncertainties, renewable energy intermittency, and parametric variations. For instance, the proposed VIC method has a minimized ISE after 28 iterations of 0.001 compared to 0.003 with conventional VIC, and 0.004 without VIC. Thence,the proposed controller achieves more accurate frequency tracking with reduced deviations and fluctuations and exhibits greater robustness compared to previous controllers used in all case studies.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.