Abstract
The major challenges in forward osmosis (FO) are low water flux, high specific reverse solute flux (SRSF), and membrane fouling. The present work addresses these problems by the incorporation of graphene quantum dots (GQDs) in the polyamide (PA) layer of thin-film composite (TFC) membranes, as well as by using an innovative polyethersulfone nanofiber support for the TFC membrane. The GQDs were prepared from eucalyptus leaves using a facile hydrothermal method that requires only deionized water, without the need for any organic solvents or reducing agents. The nanofiber support of the TFC membranes was prepared using solution blow spinning (SBS). The polyamide layer with GQDs was deposited on top of the nanofiber support through interfacial polymerization. This is the first study that reports the fouling resistance of the SBS-nanofiber-supported TFC membranes. The effect of various GQD loadings on the TFC FO membrane performance, its long-term FO testing, cleaning efficiency, and organic fouling resistance were analyzed. It was noted that the FO separation performance of the TFC membranes was improved with the incorporation of 0.05 wt.% GQDs. This study confirmed that the newly developed thin-film nanocomposite membranes demonstrated increased water flux and salt rejection, reduced SRSF, and good antifouling performance in the FO process.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.