Abstract

• Only canopy volume backscatter is almost free from the topographic influence. • One exponential equation can link volume backscatter with AGB across different sites. • Multi-baseline PolInSAR can retrieve forest height without overall bias across sites. • PolInSAR forest height agreed more with the top forest height for open forests. • The proposed AGB model alleviated the influence of forest heterogeneity. The upcoming BIOMASS mission will provide P-band repeat-pass PolInSAR data from space for the improved mapping of global biomass. PolInSAR technique has been widely validated with the potential to invert forest height and estimate forest aboveground biomass (AGB). However, the robustness of PolInSAR-based AGB estimation across different sites still lacks full evaluation, especially for those with a varied forest type, heterogeneity (varied growth ratio between cover and height), and topographic relief. In this study, we concentrated on backscatter decomposition and forest height inversion, and developed a robust AGB estimation method that can be applied to different sites. Two dense and closed tropical forest sites (Paracou and Nouragues) and one open and heterogeneous boreal forest site (Krycklan) were selected as the study areas, and the corresponding airborne PolInSAR, LiDAR, and ground measured AGB data were used for validation and analysis. Results show that ground backscatter has the strongest correlation with AGB in boreal forests, but this correlation cannot be transferred to the tropical forests. Only canopy volume backscatter is almost free from topographic influence, and its relationship with AGB across three sites can be formulated using one exponential equation, producing the best estimation accuracy, with R 2 of 0.79 and RMSE of 61.5 tons/ha (relative RMSE of 20.0 %). Multi-baseline PolInSAR retrieved forest height with little bias in spite of the presence of temporal decorrelation. One power equation can be used to correlate PolInSAR forest height with AGB across three different sites, and LOO (leave-one-out) validation shows the R 2 of 0.85 and RMSE of 51.8 tons/ha (relative RMSE of 16.9 %). However, the RVoG-inverted PolInSAR FH was found to mainly represent the top forest height for open and heterogeneous forests, which means PolInSAR FH (forest height) lacks consideration for forest horizontal structure (e.g. forest density). In contrast, volume backscatter better captured forest density, and the proposed AGB model that combines PolInSAR FH and volume backscatter further improved the AGB estimation accuracy, especially for open forests: the plot-scale validation from all three sites shows R 2 was improved from 0.79 (volume backscatter) and 0.85 (PolInSAR FH) to 0.89, and RMSE decreased from 61.5 and 51.8 to 45.2 (relative RMSE of 14.7 %) tons/ha; for region-scale validation, R 2 was improved from 0.77 and 0.83 to 0.89, and RMSE decreased from 64.2 (relative RMSE of 39.0 %) and 54.5 (34.5 %) to 48.1 (29.4 %) tons/ha.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call