Abstract

Development of near-infrared (NIR) and shortwave infrared (SWIR) emitting fluorophores is central to the fluorescence-based bioimaging. While conjugated polymer nanoparticles (polymer dots) are one of the promising fluorophores for this application, obtaining polymer dots that show bright fluorescence, especially in the SWIR wavelength region, has been challenging. Here, we report a generalized approach to obtain bright polymer dots through a systematic characterization of photophysical properties of NIR and SWIR emitting polymer dots. Detailed photophysical characterization of a series of polymer dots fabricated using polycarbazole- (PCz-) based conjugated polymers that adopt bent and twisted conformation reveals that the fluorescence brightness of the PCz-based polymer dots is determined by subtle balance between fluorescence quenching due to polymer chain interaction inside the particles and the twisting between the donor and acceptor moieties of the conjugated polymers inside the particles. Our result...

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call