Abstract

In this work, a Calcium looping (CaL) system including high temperature sorbent storage is presented, allowing to reduce the size of the calciner and the associated capital-intensive equipment (ASU and CPU). Reduction of the capital costs is particularly important for power plants with low capacity factors, which is becoming increasingly frequent for fossil fuel power plants in electric energy mixes with increasing share of intermittent renewables. The process assessment is performed by: (i) defining pulverized coal power plant (PCPP) with CaL capture system with and without sorbent storage and their mass and energy balances at nominal load; (ii) defining a simple method to predict the performance of the plant at part-load; (iii) defining the economic model, including functions for the estimation of the plant equipment cost; (iv) performing yearly simulations of the systems to calculate yearly electricity production, CO2 emissions and levelized cost of electricity for different sizes of the calcination line and the storage system and (v) performing sensitivity analysis with different power production plans and carbon taxes. With this process, optimal size of the calciner and of the storage system minimizing the cost of electricity have been found.The optimal plant design was found to correspond to a solids storage system sized to manage the weekly cycling and a calciner line sized on the average weekly load. However, to avoid excessively large solids storage system, sizing the calciner on the average daily load and the storage system to manage the daily cycling appears more feasible from the logistic viewpoint and leads to minor economic penalty compared with the optimal plant design. For the selected case sized on the daily cycling, reduction of the cost of CO2 avoided between 16% and 26% have been obtained compared to the reference CaL plant without solids storage, for representative medium and low capacity factor scenarios respectively.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.