Abstract

The development of a green and facile strategy for fabricating ecofriendly, highly effective flame retardants has remain a major challenge. Herein, supermolecular aggregates of piperazine (PiP) and phytic acid (PA) have been self-assembled onto the graphene oxide (GO) surface in water to fabricate functionalized GO (PPGO). The chemical structure and morphology of PPGO are determined by the X-ray photoelectron spectroscopy, transmission electron microscopy and scanning electron microscopy along with the energy dispersive spectroscopy. Due to the introduction of organic component onto the surface of graphene oxide, the adhesion between PPGO and the epoxy resin (EP) matrix is enhanced. As a result, the storage modulus (E′) of EP composites is increased in addition to a better dispersion of PPGO. Compared with the pure EP, the flame resistance of EP/PPGO is significantly improved, exhibiting a 42% decrease in peak heat release rate (pHRR), 22% reduction in total heat release (THR). The reduced flammability of EP is attributed to the synergistic effects afforded by the gas dilution effect of piperazine, char-forming promotion effect of phytic acid and the creation of "tortuous path" barrier effect of GO during burning. This work offers a green and facile approach for creating highly effective graphene-based flame retardants.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.