Abstract

In order to suppress zero-sequence current (ZSC) for open-end winding surfaced permanent magnet synchronous machine (OEW-SPMSM) drives with single dc voltage source, many methods have been employed. Actual solutions imply either proportional-integral-based control or direct torque control cannot present the characteristic of fast dynamic responses and low torque ripples at the same time. Hence, finite-state model predictive current control (FS-MPCC) based on a cost function with ZSC suppression was proposed. To suppress model parameter mismatch, many previous works have proposed related strategies but few work considered zero-sequence parameter disturbances such as zero-sequence inductance, resistance, and rotor flux linkage disturbances. This article improves the ZSC prediction model based on the previous ZSC errors and zero-sequence voltage deviations, and at the same time ZSC is reduced. A comparison between the conventional FS-MPCC and the improved one is carried out in simulation and experiment to verify the effectiveness of the proposed FS-MPCC scheme.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call