Abstract

Based on the recently developed finite integration method (FIM) for solving one-dimensional partial differential equations by using the trapezoidal rule for numerical quadrature, we improve in this paper the FIM with an alternative extended Simpson׳s rule in which the Cotes and Lagrange formulas are used to determine the first order integral matrix. The improved one-dimensional FIM is then further extended to solve two-dimensional problems. Numerical comparison with the finite difference method and the FIM (Trapezoidal rule) are performed by several one- and two-dimensional real application including the Poisson type differential equations and plate bending problems. It has been shown that the newly revised FIM has made significant improvement in terms of accuracy compare without much sacrifice on the stability and efficiency.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.