Abstract

SummaryThe shear strength envelope of most geotechnical materials is nonlinear. In this study, the finite element–based limit equilibrium method (FELE) is improved to assess the stability of a prescribed slip surface that obeys a nonlinear failure criterion. Two nonlinear failure criteria, namely, the Barton criterion and the generalized Hoek‐Brown (GHB) criterion, are implemented. A power curve model that can perfectly fit the envelope of the GHB criterion is proposed to explicitly express the shear strength from the normal stress. The algorithm of the improved FELE, which includes a nonlinear criterion, is explained in detail, and the fast convergence of the method is checked by evaluating examples. The numerical examples show that, for a smooth slip surface, FELE can calculate a greater factor of safety (FOS) than that calculated using the Morgenstern‐Price (MP) method when the strength criterion of slip surface is nonlinear. In addition, FELE can determine the bell‐shaped distribution of the increase in normal stress caused by anchoring measures, which cannot be considered in the MP method.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call