Abstract
In this paper, improved finite control set model predictive voltage control (FCS-MPVC) is proposed for the distributed energy resource (DER) in AC islanded microgrid (MG). Typically, AC MGs have two or more power electronic-based DERs, which have the ability to maintain a constant voltage at the point of common coupling (PCC) as well as perform power sharing among the DERs. Though linear controllers can achieve above-mentioned tasks, they have several restrictions such as slow transient response, poor disturbance rejection capability etc. The proposed control approach uses mathematical model of power converter to anticipate the voltage response for possible switching states in every sampling period. The proposed dual-objective cost function is designed to regulate the output voltage as well as load current under fault condition. Two-step horizon prediction technique reduces the switching frequency and computational burden of the designed algorithm. Performance of the proposed control technique is demonstrated through MATLAB/Simulink simulations for single distributed generator (DG) and AC MG under linear and non-linear loading conditions. The investigated work presents an excellent steady state performance, low computational overhead, better transient performance and robustness against parametric variations in contrast to classical controllers. Total harmonic distortion (THD) for linear and non-linear load is 0.89% and 1.4% respectively as illustrated in simulation results. Additionally, the three-phase symmetrical fault current has been successfully limited to the acceptable range.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Engineering Science and Technology, an International Journal
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.