Abstract

The use of more concentrated, so-called high-gravity and very-high-gravity (VHG) brewer's worts for the manufacture of beer has economic and environmental advantages. However, many current strains of brewer's yeasts ferment VHG worts slowly and incompletely, leaving undesirably large amounts of maltose and especially maltotriose in the final beers. alpha-Glucosides are transported into Saccharomyces yeasts by several transporters, including Agt1, which is a good carrier of both maltose and maltotriose. The AGT1 genes of brewer's ale yeast strains encode functional transporters, but the AGT1 genes of the lager strains studied contain a premature stop codon and do not encode functional transporters. In the present work, one or more copies of the AGT1 gene of a lager strain were repaired with DNA sequence from an ale strain and put under the control of a constitutive promoter. Compared to the untransformed strain, the transformants with repaired AGT1 had higher maltose transport activity, especially after growth on glucose (which represses endogenous alpha-glucoside transporter genes) and higher ratios of maltotriose transport activity to maltose transport activity. They fermented VHG (24 degrees Plato) wort faster and more completely, producing beers containing more ethanol and less residual maltose and maltotriose. The growth and sedimentation behaviors of the transformants were similar to those of the untransformed strain, as were the profiles of yeast-derived volatile aroma compounds in the beers.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.