Abstract

Since late 1990s, Empirical Mode Decomposition (EMD) starts to emerge as a powerful tool for processing non-linear and non-stationary signals. Nonetheless, the research on exploring EMD-relevant techniques in the domain of geometric modeling and processing is extremely rare. Directly applying EMD to coordinate functions of 3D shape geometry will not take advantage of the attractive EMD properties. To ameliorate, in this paper we articulate a novel 3D surface modeling and processing framework founded upon improved, feature-centric EMD, with a goal of realizing the full potential of EMD. Our strategy starts with a measure of mean curvature as a surface signal for EMD. Our newly-formulated measure of mean curvature is computed via the inner product of Laplacian vector and vertex normal. Such measure is both rotation-invariant and translation-invariant, facilitates the computation of different scale features for original surfaces, and avoids boundary shrinkage when processing open surfaces. Moreover, we modify the original EMD formulation by devising a feature-preserving multiscale decomposition algorithm for surface analysis and synthesis. The key idea is to explicitly formulate details as oscillation between local minima and maxima. Within our novel framework, we could accommodate many modeling and processing operations, such as filter design, detail transfer, and feature-preserving smoothing and denoising. Comprehensive experiments and quantitative evaluations/comparisons on popular models have demonstrated that our new surface processing methodology and algorithm based on the improved, feature-centric EMD are of great value in digital geometry processing, analysis, and synthesis.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call