Abstract

AbstractThe fuzzy clustering algorithm has been widely used in the research area and production and life. However, the conventional fuzzy algorithms have a disadvantage of high computational complexity. This article proposes an improved fuzzy C-means (FCM) algorithm based on K-means and principle of granularity. This algorithm is aiming at solving the problems of optimal number of clusters and sensitivity to the data initialization in the conventional FCM methods. The initialization stage of the K-medoid cluster, which is different from others, has a strong representation and is capable of detecting data with different sizes. Meanwhile, through the combination of the granular computing and FCM, the optimal number of clusters is obtained by choosing accurate validity functions. Finally, the detailed clustering process of the proposed algorithm is presented, and its performance is validated by simulation tests. The test results show that the proposed improved FCM algorithm has enhanced clustering performance in the computational complexity, running time, cluster effectiveness compared with the existing FCM algorithms.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.