Abstract
With the aim to identify new fault diagnosis and advanced robotic systems, this paper first proposes a fault diagnosis algorithm based on an artificial immune network model that can adjust the pruning threshold. Secondly, the algorithm is improved based on neighbourhood rough set theory, in which the relationships among the pruning threshold, misdiagnosis rate, and missed diagnosis rate in the shape space are discussed. In addition, an improved algorithm for adjusting the adaptively pruning threshold based solely on an observation index is described. The simulation experiments show that the algorithm can identify the new fault modes while keeping the misdiagnosis and missed diagnosis rates low.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.