Abstract

Vehicle detection in remote sensing images has attracted remarkable attention for its important role in a variety of applications in traffic, security, and military fields. Motivated by the stunning success of region convolutional neural network (R-CNN) techniques, which have achieved the state-of-the-art performance in object detection task on benchmark data sets, we propose to improve the Faster R-CNN method with better feature extraction, multiscale feature fusion, and homography data augmentation to realize vehicle detection in remote sensing images. Extensive experiments on representative remote sensing data sets related to vehicle detection demonstrate that our method achieves better performance than the state-of-the-art approaches. The source code will be made available (after the review process).

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.