Abstract

Organic scintillators are widely used for fast neutron detection and spectroscopy. Several effects complicate the interpretation of results from detectors based upon these materials. First, fast neutrons will often leave a detector before depositing all of their energy within it. Second, fast neutrons will typically scatter several times within a detector, and there is a non-proportional relationship between the energy of, and the scintillation light produced by, each individual scatter; therefore, there is not a deterministic relationship between the scintillation light observed and the neutron energy deposited. Here we demonstrate a hardware technique for reducing both of these effects. Use of a segmented detector allows for the event-by-event correction of the light yield non-proportionality and for the preferential selection of events with near-complete energy deposition, since these will typically have high segment multiplicities.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.