Abstract

β-Amylase was extracted from barley or malt using four physical techniques to break up grists which had been prepared using a Moulinex coffee grinder. Grinding with a Polytron homogeniser apparently completely disrupted all cells, as determined by transmission electron microscopy, and increased the efficiency of extraction of β-amylase from barley by more than 30%. The other treatments tested were without value. The β-amylase activity in extracts of barley or malt was assayed by measuring the production of reducing sugars from reduced soluble starch, using a PAHBAH reagent. α-Amylase, which interferes with the quantitation of β-amylase in extracts of malt, was not totally inactivated by the chelating buffer used for enzyme extraction or by several other chelating agents. α-Amylase activity was quantified specifically using Phadebas. Using purified α-amylase a calibration was developed which related activity, as determined using Phadebas, to reducing power units. Thus the α-amylase activity present in an extract containing β-amylase could be determined using Phadebas and the reducing power equivalent activity subtracted from the total “apparent” activity to give the actual β-amylase activity. α-Glucosidase and limit dextrinase activities are believed to be too low to have a significant effect on the apparent β-amylase. The soluble and bound β-amylase activities were measured in samples taken from micromalting barley (Alexis). Dry weight losses increased to over 10% after 8 days germination. Antibiotics, applied during steeping, were used to control microbes in one experiment. However, their use checked germination and reduced malting losses to 8.4% in 8 days germination. The soluble enzyme present in extracts from steeped barley and early stages of germination was activated (20–40%) by additions of the reducing agent DTT.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.