Abstract

The advantageous use of sine-shaped pulses in heteronuclear half filters is explored for studying biological macromolecules. The typical square, or hard, pulse used in half-filter pulse sequences for heteronuclear excitation results in suboptimal suppression of unwanted resonances due to incomplete inversion of spins. The novel use of short-duration shaped pulses applied at high power achieves more uniform excitation profiles over the extended frequency ranges often needed for heteronuclear filtering. This approach is used in the development of a double-tuned ω1, ω2-double-half-filtered, double-quantum-filtered COSY experiment. The efficiency of this experiment incorporating sine pulses compares favorably with that obtained with square pulses in a mixture of 13C-labeled and unlabeled amino acids. Sinc-pulse-filtered spectra of the 24 kDa methionine repressor protein dimer MetJ, uniformly 13C-labeled except at two unlabeled methionine residues, were also obtained to demonstrate the utility of this approach in biomacromolecular studies.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.