Abstract

Central line associated bloodstream infections (CLABSIs) are a serious cause of morbidity and mortality induced by the use of central venous catheters (CVCs). Nobel metal alloy (NMA) coating is an advanced surface modification that prevents microbial adhesion and growth on catheters and thereby reduces the risk of infection. In vitro microbiological analyses have shown up to 90% reduction in microbial adhesion on coated CVC compared to uncoated ones. This study aimed to assess the blood compatibility of NMA‐coated CVC according to ISO 10993‐4. Hemolysis, thrombin–antithrombin (TAT) complex, platelet counts, fibrin deposition, and C3a and SC5b‐9 complement activation were analyzed in human blood exposed to the NMA‐coated and control CVCs using a Chandler‐loop model. NMA‐coated CVC did not induce hemolysis and fell in the “nonhemolytic” category according to ASTM F756‐00. Significantly lower amounts of TAT were generated and less fibrin was deposited on NMA‐coated CVC than on uncoated ones. Slightly higher platelet counts and lower complement markers were observed for NMA‐coated CVC compared to uncoated ones. These data suggest that the NMA‐coated CVC has better ex vivo blood compatibility compared to uncoated CVC. © 2015 The Authors Journal of Biomedical Materials Research Part B: Applied Biomaterials Published by Wiley Periodicals, Inc. J Biomed Mater Res Part B: Appl Biomater, 104B: 1359–1365, 2016.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.